当前位置:首页 > 教学文书 > 教案

有理数的乘法教案

时间:2024-09-02 00:18:09
有理数的乘法教案

有理数的乘法教案

作为一名专为他人授业解惑的人民教师,很有必要精心设计一份教案,教案是保证教学取得成功、提高教学质量的基本条件。优秀的教案都具备一些什么特点呢?以下是小编精心整理的有理数的乘法教案,希望能够帮助到大家。

有理数的乘法教案1

一、学习目标:

1. 熟练掌握有理数的乘法法 则

2. 会运用乘法运算率简化乘法运算.

3. 了解互为倒数的意义,并会求一个非零有理数的倒数

二、学习重点:探索有 理数乘法运算律

学习难点:运用乘法运算律简化计算

三、学习过程:

(一)、情境引入:

1、复习有理数的乘法法则(两个因数、两个以上的因数),并举例说明。

2、在含有负数的乘法运算中,乘法交换律,结合律和分配律还成立吗?

观察 下列各有理数乘法,从中可得到怎样的结论?

(1)(-6)(-7)= (-7)(-6)=

(2)[( -3)(-5)]2 = (-3)[(-5)2]=

(3)(-4)(- 3+5)= (-4 )(-3)+(-4)5=

3、请再举几组数试一试,看上面所得的结论是否成立?

(二)、新课讲解:

有理数乘法运算律

交换律 ab =ba

结合律 ( ab)c=a(bc)

分配律 a(b+c)=ab+ac

例1.计算:

(1)8(- )(-0.125) (2)

(3)( )(-36) (4)

例2.计算

(1)8 (2)(4)( ) (3)( )( )

观察例2中的三个运算, 两个因数有什么 特点?它们的乘积呢?你能够得到什么结论?

(三)、巩固练习:

1.运用运算律填空.

(1)-2-3=-3(_____).

(2)[-32](-4)=-3[(______)(______)].

(3)-5[-2 +-3]=-5(_____)+(_____)-3

2.选择题

(1)若a0 ,必有 ( )

A a0 B a0 C a,b同号 D a,b异号

(2)利用分配律计算 时,正确的方案可以是 ( )

A B

C D

3.运用运算律计算:

(1)(-25)(-85)(-4) (2) 14-12-1816

(3)6037-6017+6057 (4)18-23+1323-423

(5)(-4)(-18.36) (6)(- )0.125(-2 )

(7)(- + - - )(-20); (8)(-7.33)(42.07)+(-2.07)(-7.33)

四、课堂小结:

通过本节课你学到了哪些知识?你 达成学习目标了吗?

五、作业布置:

课本第42页习题2.5 第3题

数学评价手册

六 、学后记/教后记

有理数的乘法教案2

教学目标

1.知识与技能

①经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证的能力.

②会进行有理数的乘法运算.

2.过程与方法

通过对问题的变式探索,培养观察、分析、抽象的能力.

3.情感、态度与价值观

通过观察、归纳、类比、推断获得数学猜想,体验数学活动中的探索性和创造性.

教学重点难点

重点:能按有理数乘法法则进行有理数乘法运算.

难点:含有负因数的乘法.

教与学互动设计

(一)创设情境,导入新课

做一做 出示一组算式,请同学们用计算器计算并找出它们的规律.

例1 (1)(+5)(+3)=_______;(2)(+5)(-3)=________

(3)(-5)(+3)=________;(4)(-5)(-3)=________

例2 (1)(+6)(+4)=________;(2)(+6)(-4)=________

(3)(-6)(+4)=________;(4)(-6)(-4)=________

(二)合作交流,解读探究

想一想 你们发现积的符号与因数的符号之间的关系如何?

学生活动:计算、讨论

总结 一正一负的两个数的乘积为负;两正或两负的乘积是正数.

两数相乘,同号得正,异号得负.

想一想 两数相乘,积的绝对值是怎么得到的呢?

学生:是两因数的绝对值的积.

有理数的乘法教案3

有理数的乘法教案

学习目标:

1、理解有理数的运算法则;能根据有理数乘法运算法则进行有理的简单运算

2、经历探索有理数乘法法则过程,发展观察、归纳、猜想、验证能力。

3、培养语言表达能力。调动学习积极性,培养学习数学的兴趣。

学习重点:有理数乘法

学习难点:法则推导

教学方法:引导、探究、归纳与练习相结合

教学过程

一、学前准备

计算:

(1)(一2)十(一2)

(2)(一2)十(一2)十(一2)

(3)(一2)十(一2)十(一2)十(一2)

(4)(一2)十(一2)十(一2)十(一2)十(一2)

猜想下列各式的值:

(一2)×2(一2)×3

(一2)×4(一2)×5

二、探究新知

1、自学有理数乘法中不同的形式,完成教科书中29~30页的填空。

2、观察以上各式,结合对问题的研究,请同学们回答:

(1)正数乘以正数积为__________数,(2)正数乘以负数积为__________数,

(3)负数乘以正数积为__________数,(4)负数乘以负数积为__________数。

提出问题:一个数和零相乘如何解释呢?

《1.4.1有理数的乘法》同步练习含解析

1、若有理数a,b满足a+b<0,ab<0,则()

A、a,b都是正数

B、a,b都是负数

C、a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值

D、a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值

5、若a+b<0,ab< ……此处隐藏9687个字……

(2)引导学生观察、分析例子中两因数的关系,得出两个有理数互为倒数,它们的积为 。

(3)学生做练习,教师评析。

(4)教师引导学生做例题,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。

有理数的乘法教案13

【教学目标】

1.熟练有理数乘法法则;

2.探索运用乘法运算律简化运算.

【对话探索设计】

〖探索1

你知道乘法的交换律和结合律吗?你会用字母表示它们吗?在有理数范围内,它们仍然成立吗?

〖阅读理解

乘法交换律和结合律(见P40)

〖探索2

下列计算若按顺序依次相乘怎样算? 用运算律为什么能简化运算?

(1)252004 (2) - 1999

〖探索3

运用运算律真的能节省时间吗?分两个大组,比一比:

计算(-198)

〖练习1

运用乘法交换律和结合律简化运算:

(1)1999125 (2) -1097

〖探索4

1.每千克大米1.60元,第一天购进3590千克,第二天又购进6410千克,两天一共要付多少钱?你知道这道题有哪两种算法吗?哪一种简便?

2.如右图,你会用两种方法求长方形ABCD的面积吗?

〖例题学习

P41.例5

〖作业

P41.练习

〖补充作业

1.计算(注意运用分配律简化运算):

(1)-6(100-); (2)(-12).

(2)2(-3)4(-5)(-6)789(-10);

(3) 2(-3)4(-5)(-6)0789(-10);

4.下列各式的积(幂)是正的还是负的?为什么?

(1)(-3)(-3)(-3)(-3)(-3).

5.运用乘法交换律和结合律简化运算:

(1)-98(-0.6); (2)-1999(-)()

【补充练习】

1.某地气象统计资料表明,高度每增加,气温就降低大约.现在地面气温是,则在的高空的气温是多少?

2.运用分配律化简下列的式子:

(1)例3x+9x+x (2)13x-20x+5x;

=(3+9+1)x

=13x;

(3)12-9 (4)-z-7z-8z.

有理数的乘法教案14

【教学目标】

1、巩固有理数乘法法则;

2、探索多个有理数相乘时,积的符号的确定方法、

【对话探索设计】

探索1

1、下列各式的积为什么是负的?

(1)—2345

(2)2(—3)4(—5)6789(—10)、

2、下列各式的积为什么是正的?

(1)(—2)(—3)456

(2)—2345(—6)78(—9)(—10)、

观察1

P38、 观察

思考归纳

几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?

(见P38、思考)

与两个有理数相乘一样,几个不等于0的有理数相乘,要先确定积的符号,再确定积的绝对值

例题学习

P39、例3

观察2

P39、 观察

练习

P39、练习

作业

P46、7、(1),(2)(3),8,9,10,11、

补充练习

1、(1)若a = 3,a与2a哪个大?若 a= 0 呢? 又若 a=—3呢?

(2)a与2a哪个大?

(3)判断:9a一定大于2a;

(4)判断:9a一定不小于2a、

(5)判断:9a有可能小于2a、

2、几个数相乘,积的符号由负因数的个数决定 这句话错在哪里?

3、若ab,则acbc吗?为什么?请举例说明、

4、若mn=0,那么一定有( )

(A)m=n=0、(B)m=0,n0、(C)m0,n=0、(D)m、n中至少有一个为0、

5、利用乘法法则完成下表,你能发现什么规律?

3210—1—2—3

39630—3

2622

1321

—1

—2

—3

6、(1)经过调查发现,若甲商店某种彩电降价的百分率记为a,则乙商店这种彩电降价的百分率可记为—a,你认为哪家商店该彩电的降价的百分率大?为什么?

(2)经过调查发现,若甲商店某种彩电降价的百分率记为a,则乙商店这种彩电降价的百分率可记为1、2a,你认为哪家商店该彩电的降价的百分率大?为什么?

有理数的乘法教案15

三维目标

一、知识与技能

(1)能确定多个因数相乘时,积的符号,并能用法则进行多个因数的乘积运算。

(2)能利用计算器进行有理数的乘法运算。

二、过程与方法

经历探索几个不为0的数相乘,积的符号问题的过程,发展观察、归纳验证等能力。

三、情感态度与价值观

培养学生主动探索,积极思考的学习兴趣。

教学重、难点与关键

1.重点:能用法则进行多个因数的乘积运算。

2.难点:积的符号的确定。

3.关键:让学生观察实例,发现规律。

教具准备

投影仪。

四、 教学过程

1.请叙述有理数的乘法法则。

2.计算:(1)│-5│(-2); (2)(-) (3)0(-99.9)。

五、新授

1.多个有理数相乘,可以把它们按顺序依次相乘。

例如:计算:1(-1)(-7)=-(-7)=-2(-7)=14;

又如:(+2)[(-78)]=(+2)(-26)=-52.

我们知道计算有理数的乘法,关键是确定积的符号。

观察:下列各式的积是正的还是负的?

(1)234 (2)234(-4)

(3)2(-3)(-4)(4)(-2)(-3)(-4)(-5)。

易得出:(1)、(3)式积为负,(2)、(4)式积为正,积的符号与负因数的个数有关。

教师问:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?

学生完成思考后,教师指出:几个不是0的数相乘,积的符号由负因数的个数决定,与正因数的个数无关,当负因数的个数为负数时,积为负数;当负因数的个数为偶数时,积为正数。

2.多个不是0的有理数相乘,先由负因数的个数确定积的符号再求各个绝对值的积。

《有理数的乘法教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式